Source code for cleverhans.attacks

from abc import ABCMeta
import numpy as np
from six.moves import xrange
import warnings
import collections

import cleverhans.utils as utils
from cleverhans.model import Model, CallableModelWrapper

_logger = utils.create_logger("cleverhans.attacks")


[docs]class Attack(object): """ Abstract base class for all attack classes. """ __metaclass__ = ABCMeta def __init__(self, model, back='tf', sess=None, dtypestr='float32'): """ :param model: An instance of the cleverhans.model.Model class. :param back: The backend to use. Currently 'tf' is the only option. :param sess: The tf session to run graphs in """ if not(back == 'tf'): raise ValueError("Backend argument must either be 'tf'.") if back == 'tf': import tensorflow as tf self.tf_dtype = tf.as_dtype(dtypestr) if sess is None: sess = tf.get_default_session() self.np_dtype = np.dtype(dtypestr) import cleverhans.attacks_tf as attacks_tf attacks_tf.np_dtype = self.np_dtype attacks_tf.tf_dtype = self.tf_dtype if not isinstance(model, Model): raise ValueError("The model argument should be an instance of" " the cleverhans.model.Model class.") # Prepare attributes self.model = model self.back = back self.sess = sess # We are going to keep track of old graphs and cache them. self.graphs = {} # When calling generate_np, arguments in the following set should be # fed into the graph, as they are not structural items that require # generating a new graph. # This dict should map names of arguments to the types they should # have. # (Usually, the target class will be a feedable keyword argument.) self.feedable_kwargs = {} # When calling generate_np, arguments in the following set should NOT # be fed into the graph, as they ARE structural items that require # generating a new graph. # This list should contain the names of the structural arguments. self.structural_kwargs = []
[docs] def generate(self, x, **kwargs): """ Generate the attack's symbolic graph for adversarial examples. This method should be overriden in any child class that implements an attack that is expressable symbolically. Otherwise, it will wrap the numerical implementation as a symbolic operator. :param x: The model's symbolic inputs. :param **kwargs: optional parameters used by child classes. :return: A symbolic representation of the adversarial examples. """ error = "Sub-classes must implement generate." raise NotImplementedError(error)
[docs] def construct_graph(self, fixed, feedable, x_val, hash_key): """ Construct the graph required to run the attack through generate_np. :param fixed: Structural elements that require defining a new graph. :param feedable: Arguments that can be fed to the same graph when they take different values. :param x_val: symbolic adversarial example :param hash_key: the key used to store this graph in our cache """ # try our very best to create a TF placeholder for each of the # feedable keyword arguments, and check the types are one of # the allowed types import tensorflow as tf class_name = str(self.__class__).split(".")[-1][:-2] _logger.info("Constructing new graph for attack " + class_name) # remove the None arguments, they are just left blank for k in list(feedable.keys()): if feedable[k] is None: del feedable[k] # process all of the rest and create placeholders for them new_kwargs = dict(x for x in fixed.items()) for name, value in feedable.items(): given_type = self.feedable_kwargs[name] if isinstance(value, np.ndarray): new_shape = [None] + list(value.shape[1:]) new_kwargs[name] = tf.placeholder(given_type, new_shape) elif isinstance(value, utils.known_number_types): new_kwargs[name] = tf.placeholder(given_type, shape=[]) else: raise ValueError("Could not identify type of argument " + name + ": " + str(value)) # x is a special placeholder we always want to have x_shape = [None] + list(x_val.shape)[1:] x = tf.placeholder(self.tf_dtype, shape=x_shape) # now we generate the graph that we want x_adv = self.generate(x, **new_kwargs) self.graphs[hash_key] = (x, new_kwargs, x_adv) if len(self.graphs) >= 10: warnings.warn("Calling generate_np() with multiple different " "structural paramaters is inefficient and should" " be avoided. Calling generate() is preferred.")
[docs] def generate_np(self, x_val, **kwargs): """ Generate adversarial examples and return them as a NumPy array. Sub-classes *should not* implement this method unless they must perform special handling of arguments. :param x_val: A NumPy array with the original inputs. :param **kwargs: optional parameters used by child classes. :return: A NumPy array holding the adversarial examples. """ if self.sess is None: raise ValueError("Cannot use `generate_np` when no `sess` was" " provided") fixed, feedable, hash_key = self.construct_variables(kwargs) if hash_key not in self.graphs: self.construct_graph(fixed, feedable, x_val, hash_key) x, new_kwargs, x_adv = self.graphs[hash_key] feed_dict = {x: x_val} for name in feedable: feed_dict[new_kwargs[name]] = feedable[name] return self.sess.run(x_adv, feed_dict)
[docs] def construct_variables(self, kwargs): """ Construct the inputs to the attack graph to be used by generate_np. :param kwargs: Keyword arguments to generate_np. :return: Structural and feedable arguments as well as a unique key for the graph given these inputs. """ # the set of arguments that are structural properties of the attack # if these arguments are different, we must construct a new graph fixed = dict((k, v) for k, v in kwargs.items() if k in self.structural_kwargs) # the set of arguments that are passed as placeholders to the graph # on each call, and can change without constructing a new graph feedable = dict((k, v) for k, v in kwargs.items() if k in self.feedable_kwargs) if len(fixed) + len(feedable) < len(kwargs): warnings.warn("Supplied extra keyword arguments that are not " "used in the graph computation. They have been " "ignored.") if not all(isinstance(value, collections.Hashable) for value in fixed.values()): # we have received a fixed value that isn't hashable # this means we can't cache this graph for later use, # and it will have to be discarded later hash_key = None else: # create a unique key for this set of fixed paramaters hash_key = tuple(sorted(fixed.items())) return fixed, feedable, hash_key
[docs] def get_or_guess_labels(self, x, kwargs): """ Get the label to use in generating an adversarial example for x. The kwargs are fed directly from the kwargs of the attack. If 'y' is in kwargs, then assume it's an untargeted attack and use that as the label. If 'y_target' is in kwargs, then assume it's a targeted attack and use that as the label. Otherwise, use the model's prediction as the label and perform an untargeted attack. """ import tensorflow as tf if 'y' in kwargs and 'y_target' in kwargs: raise ValueError("Can not set both 'y' and 'y_target'.") elif 'y' in kwargs: labels = kwargs['y'] elif 'y_target' in kwargs: labels = kwargs['y_target'] else: preds = self.model.get_probs(x) preds_max = tf.reduce_max(preds, 1, keep_dims=True) original_predictions = tf.to_float(tf.equal(preds, preds_max)) labels = tf.stop_gradient(original_predictions) if isinstance(labels, np.ndarray): nb_classes = labels.shape[1] else: nb_classes = labels.get_shape().as_list()[1] return labels, nb_classes
[docs] def parse_params(self, params=None): """ Take in a dictionary of parameters and applies attack-specific checks before saving them as attributes. :param params: a dictionary of attack-specific parameters :return: True when parsing was successful """ return True
[docs]class FastGradientMethod(Attack): """ This attack was originally implemented by Goodfellow et al. (2015) with the infinity norm (and is known as the "Fast Gradient Sign Method"). This implementation extends the attack to other norms, and is therefore called the Fast Gradient Method. Paper link: https://arxiv.org/abs/1412.6572 """ def __init__(self, model, back='tf', sess=None, dtypestr='float32'): """ Create a FastGradientMethod instance. Note: the model parameter should be an instance of the cleverhans.model.Model abstraction provided by CleverHans. """ if not isinstance(model, Model): model = CallableModelWrapper(model, 'probs') super(FastGradientMethod, self).__init__(model, back, sess, dtypestr) self.feedable_kwargs = {'eps': self.np_dtype, 'y': self.np_dtype, 'y_target': self.np_dtype, 'clip_min': self.np_dtype, 'clip_max': self.np_dtype} self.structural_kwargs = ['ord']
[docs] def generate(self, x, **kwargs): """ Generate symbolic graph for adversarial examples and return. :param x: The model's symbolic inputs. :param eps: (optional float) attack step size (input variation) :param ord: (optional) Order of the norm (mimics NumPy). Possible values: np.inf, 1 or 2. :param y: (optional) A tensor with the model labels. Only provide this parameter if you'd like to use true labels when crafting adversarial samples. Otherwise, model predictions are used as labels to avoid the "label leaking" effect (explained in this paper: https://arxiv.org/abs/1611.01236). Default is None. Labels should be one-hot-encoded. :param y_target: (optional) A tensor with the labels to target. Leave y_target=None if y is also set. Labels should be one-hot-encoded. :param clip_min: (optional float) Minimum input component value :param clip_max: (optional float) Maximum input component value """ # Parse and save attack-specific parameters assert self.parse_params(**kwargs) from .attacks_tf import fgm labels, nb_classes = self.get_or_guess_labels(x, kwargs) return fgm(x, self.model.get_probs(x), y=labels, eps=self.eps, ord=self.ord, clip_min=self.clip_min, clip_max=self.clip_max, targeted=(self.y_target is not None))
[docs] def parse_params(self, eps=0.3, ord=np.inf, y=None, y_target=None, clip_min=None, clip_max=None, **kwargs): """ Take in a dictionary of parameters and applies attack-specific checks before saving them as attributes. Attack-specific parameters: :param eps: (optional float) attack step size (input variation) :param ord: (optional) Order of the norm (mimics NumPy). Possible values: np.inf, 1 or 2. :param y: (optional) A tensor with the model labels. Only provide this parameter if you'd like to use true labels when crafting adversarial samples. Otherwise, model predictions are used as labels to avoid the "label leaking" effect (explained in this paper: https://arxiv.org/abs/1611.01236). Default is None. Labels should be one-hot-encoded. :param y_target: (optional) A tensor with the labels to target. Leave y_target=None if y is also set. Labels should be one-hot-encoded. :param clip_min: (optional float) Minimum input component value :param clip_max: (optional float) Maximum input component value """ # Save attack-specific parameters self.eps = eps self.ord = ord self.y = y self.y_target = y_target self.clip_min = clip_min self.clip_max = clip_max if self.y is not None and self.y_target is not None: raise ValueError("Must not set both y and y_target") # Check if order of the norm is acceptable given current implementation if self.ord not in [np.inf, int(1), int(2)]: raise ValueError("Norm order must be either np.inf, 1, or 2.") return True
[docs]class BasicIterativeMethod(Attack): """ The Basic Iterative Method (Kurakin et al. 2016). The original paper used hard labels for this attack; no label smoothing. Paper link: https://arxiv.org/pdf/1607.02533.pdf """ def __init__(self, model, back='tf', sess=None, dtypestr='float32'): """ Create a BasicIterativeMethod instance. Note: the model parameter should be an instance of the cleverhans.model.Model abstraction provided by CleverHans. """ if not isinstance(model, Model): model = CallableModelWrapper(model, 'probs') super(BasicIterativeMethod, self).__init__(model, back, sess, dtypestr) self.feedable_kwargs = {'eps': self.np_dtype, 'eps_iter': self.np_dtype, 'y': self.np_dtype, 'y_target': self.np_dtype, 'clip_min': self.np_dtype, 'clip_max': self.np_dtype} self.structural_kwargs = ['ord', 'nb_iter']
[docs] def generate(self, x, **kwargs): """ Generate symbolic graph for adversarial examples and return. :param x: The model's symbolic inputs. :param eps: (required float) maximum distortion of adversarial example compared to original input :param eps_iter: (required float) step size for each attack iteration :param nb_iter: (required int) Number of attack iterations. :param y: (optional) A tensor with the model labels. :param y_target: (optional) A tensor with the labels to target. Leave y_target=None if y is also set. Labels should be one-hot-encoded. :param ord: (optional) Order of the norm (mimics Numpy). Possible values: np.inf, 1 or 2. :param clip_min: (optional float) Minimum input component value :param clip_max: (optional float) Maximum input component value """ import tensorflow as tf # Parse and save attack-specific parameters assert self.parse_params(**kwargs) # Initialize loop variables eta = 0 # Fix labels to the first model predictions for loss computation model_preds = self.model.get_probs(x) preds_max = tf.reduce_max(model_preds, 1, keep_dims=True) if self.y_target is not None: y = self.y_target targeted = True elif self.y is not None: y = self.y targeted = False else: y = tf.to_float(tf.equal(model_preds, preds_max)) y = tf.stop_gradient(y) targeted = False y_kwarg = 'y_target' if targeted else 'y' fgm_params = {'eps': self.eps_iter, y_kwarg: y, 'ord': self.ord, 'clip_min': self.clip_min, 'clip_max': self.clip_max} for i in range(self.nb_iter): FGM = FastGradientMethod(self.model, back=self.back, sess=self.sess) # Compute this step's perturbation adv_x = FGM.generate(x + eta, **fgm_params) # Clipping perturbation according to clip_min and clip_max if self.clip_min is not None and self.clip_max is not None: adv_x = tf.clip_by_value(adv_x, self.clip_min, self.clip_max) # Clipping perturbation eta to self.ord norm ball eta = adv_x - x from cleverhans.utils_tf import clip_eta eta = clip_eta(eta, self.ord, self.eps) # Define adversarial example (and clip if necessary) adv_x = x + eta if self.clip_min is not None and self.clip_max is not None: adv_x = tf.clip_by_value(adv_x, self.clip_min, self.clip_max) return adv_x
[docs] def parse_params(self, eps=0.3, eps_iter=0.05, nb_iter=10, y=None, ord=np.inf, clip_min=None, clip_max=None, y_target=None, **kwargs): """ Take in a dictionary of parameters and applies attack-specific checks before saving them as attributes. Attack-specific parameters: :param eps: (required float) maximum distortion of adversarial example compared to original input :param eps_iter: (required float) step size for each attack iteration :param nb_iter: (required int) Number of attack iterations. :param y: (optional) A tensor with the model labels. :param y_target: (optional) A tensor with the labels to target. Leave y_target=None if y is also set. Labels should be one-hot-encoded. :param ord: (optional) Order of the norm (mimics Numpy). Possible values: np.inf, 1 or 2. :param clip_min: (optional float) Minimum input component value :param clip_max: (optional float) Maximum input component value """ # Save attack-specific parameters self.eps = eps self.eps_iter = eps_iter self.nb_iter = nb_iter self.y = y self.y_target = y_target self.ord = ord self.clip_min = clip_min self.clip_max = clip_max if self.y is not None and self.y_target is not None: raise ValueError("Must not set both y and y_target") # Check if order of the norm is acceptable given current implementation if self.ord not in [np.inf, 1, 2]: raise ValueError("Norm order must be either np.inf, 1, or 2.") return True
[docs]class MomentumIterativeMethod(Attack): """ The Momentum Iterative Method (Dong et al. 2017). This method won the first places in NIPS 2017 Non-targeted Adversarial Attacks and Targeted Adversarial Attacks. The original paper used hard labels for this attack; no label smoothing. Paper link: https://arxiv.org/pdf/1710.06081.pdf """ def __init__(self, model, back='tf', sess=None, dtypestr='float32'): """ Create a MomentumIterativeMethod instance. Note: the model parameter should be an instance of the cleverhans.model.Model abstraction provided by CleverHans. """ if not isinstance(model, Model): model = CallableModelWrapper(model, 'probs') super(MomentumIterativeMethod, self).__init__(model, back, sess, dtypestr) self.feedable_kwargs = {'eps': self.np_dtype, 'eps_iter': self.np_dtype, 'y': self.np_dtype, 'y_target': self.np_dtype, 'clip_min': self.np_dtype, 'clip_max': self.np_dtype} self.structural_kwargs = ['ord', 'nb_iter', 'decay_factor']
[docs] def generate(self, x, **kwargs): """ Generate symbolic graph for adversarial examples and return. :param x: The model's symbolic inputs. :param eps: (required float) maximum distortion of adversarial example compared to original input :param eps_iter: (required float) step size for each attack iteration :param nb_iter: (required int) Number of attack iterations. :param y: (optional) A tensor with the model labels. :param y_target: (optional) A tensor with the labels to target. Leave y_target=None if y is also set. Labels should be one-hot-encoded. :param ord: (optional) Order of the norm (mimics Numpy). Possible values: np.inf, 1 or 2. :param decay_factor: (optional) Decay factor for the momentum term. :param clip_min: (optional float) Minimum input component value :param clip_max: (optional float) Maximum input component value """ import tensorflow as tf # Parse and save attack-specific parameters assert self.parse_params(**kwargs) # Initialize loop variables momentum = 0 adv_x = x # Fix labels to the first model predictions for loss computation y, nb_classes = self.get_or_guess_labels(x, kwargs) y = y / tf.reduce_sum(y, 1, keep_dims=True) targeted = (self.y_target is not None) from . import utils_tf for i in range(self.nb_iter): # Compute loss preds = self.model.get_probs(adv_x) loss = utils_tf.model_loss(y, preds, mean=False) if targeted: loss = -loss # Define gradient of loss wrt input grad, = tf.gradients(loss, adv_x) # Normalize current gradient and add it to the accumulated gradient red_ind = list(xrange(1, len(grad.get_shape()))) avoid_zero_div = tf.cast(1e-12, grad.dtype) grad = grad / tf.maximum(avoid_zero_div, tf.reduce_mean(tf.abs(grad), red_ind, keep_dims=True)) momentum = self.decay_factor * momentum + grad if self.ord == np.inf: normalized_grad = tf.sign(momentum) elif self.ord == 1: norm = tf.maximum(avoid_zero_div, tf.reduce_sum(tf.abs(momentum), red_ind, keep_dims=True)) normalized_grad = momentum / norm elif self.ord == 2: square = tf.reduce_sum(tf.square(momentum), red_ind, keep_dims=True) norm = tf.sqrt(tf.maximum(avoid_zero_div, square)) normalized_grad = momentum / norm else: raise NotImplementedError("Only L-inf, L1 and L2 norms are " "currently implemented.") # Update and clip adversarial example in current iteration scaled_grad = self.eps_iter * normalized_grad adv_x = adv_x + scaled_grad adv_x = x + utils_tf.clip_eta(adv_x - x, self.ord, self.eps) if self.clip_min is not None and self.clip_max is not None: adv_x = tf.clip_by_value(adv_x, self.clip_min, self.clip_max) adv_x = tf.stop_gradient(adv_x) return adv_x
[docs] def parse_params(self, eps=0.3, eps_iter=0.06, nb_iter=10, y=None, ord=np.inf, decay_factor=1.0, clip_min=None, clip_max=None, y_target=None, **kwargs): """ Take in a dictionary of parameters and applies attack-specific checks before saving them as attributes. Attack-specific parameters: :param eps: (required float) maximum distortion of adversarial example compared to original input :param eps_iter: (required float) step size for each attack iteration :param nb_iter: (required int) Number of attack iterations. :param y: (optional) A tensor with the model labels. :param y_target: (optional) A tensor with the labels to target. Leave y_target=None if y is also set. Labels should be one-hot-encoded. :param ord: (optional) Order of the norm (mimics Numpy). Possible values: np.inf, 1 or 2. :param decay_factor: (optional) Decay factor for the momentum term. :param clip_min: (optional float) Minimum input component value :param clip_max: (optional float) Maximum input component value """ # Save attack-specific parameters self.eps = eps self.eps_iter = eps_iter self.nb_iter = nb_iter self.y = y self.y_target = y_target self.ord = ord self.decay_factor = decay_factor self.clip_min = clip_min self.clip_max = clip_max if self.y is not None and self.y_target is not None: raise ValueError("Must not set both y and y_target") # Check if order of the norm is acceptable given current implementation if self.ord not in [np.inf, 1, 2]: raise ValueError("Norm order must be either np.inf, 1, or 2.") return True
[docs]class SaliencyMapMethod(Attack): """ The Jacobian-based Saliency Map Method (Papernot et al. 2016). Paper link: https://arxiv.org/pdf/1511.07528.pdf """ def __init__(self, model, back='tf', sess=None, dtypestr='float32'): """ Create a SaliencyMapMethod instance. Note: the model parameter should be an instance of the cleverhans.model.Model abstraction provided by CleverHans. """ if not isinstance(model, Model): model = CallableModelWrapper(model, 'probs') super(SaliencyMapMethod, self).__init__(model, back, sess, dtypestr) import tensorflow as tf self.feedable_kwargs = {'y_target': self.tf_dtype} self.structural_kwargs = ['theta', 'gamma', 'clip_max', 'clip_min', 'symbolic_impl']
[docs] def generate(self, x, **kwargs): """ Generate symbolic graph for adversarial examples and return. :param x: The model's symbolic inputs. :param theta: (optional float) Perturbation introduced to modified components (can be positive or negative) :param gamma: (optional float) Maximum percentage of perturbed features :param clip_min: (optional float) Minimum component value for clipping :param clip_max: (optional float) Maximum component value for clipping :param y_target: (optional) Target tensor if the attack is targeted """ import tensorflow as tf # Parse and save attack-specific parameters assert self.parse_params(**kwargs) if self.symbolic_impl: from .attacks_tf import jsma_symbolic # Create random targets if y_target not provided if self.y_target is None: from random import randint def random_targets(gt): result = gt.copy() nb_s = gt.shape[0] nb_classes = gt.shape[1] for i in xrange(nb_s): result[i, :] = np.roll(result[i, :], randint(1, nb_classes-1)) return result labels, nb_classes = self.get_or_guess_labels(x, kwargs) self.y_target = tf.py_func(random_targets, [labels], self.tf_dtype) self.y_target.set_shape([None, nb_classes]) x_adv = jsma_symbolic(x, model=self.model, y_target=self.y_target, theta=self.theta, gamma=self.gamma, clip_min=self.clip_min, clip_max=self.clip_max) else: from .attacks_tf import jacobian_graph, jsma_batch # Define Jacobian graph wrt to this input placeholder preds = self.model.get_probs(x) nb_classes = preds.get_shape().as_list()[-1] grads = jacobian_graph(preds, x, nb_classes) # Define appropriate graph (targeted / random target labels) if self.y_target is not None: def jsma_wrap(x_val, y_target): return jsma_batch(self.sess, x, preds, grads, x_val, self.theta, self.gamma, self.clip_min, self.clip_max, nb_classes, y_target=y_target) # Attack is targeted, target placeholder will need to be fed x_adv = tf.py_func(jsma_wrap, [x, self.y_target], self.tf_dtype) else: def jsma_wrap(x_val): return jsma_batch(self.sess, x, preds, grads, x_val, self.theta, self.gamma, self.clip_min, self.clip_max, nb_classes, y_target=None) # Attack is untargeted, target values will be chosen at random x_adv = tf.py_func(jsma_wrap, [x], self.tf_dtype) return x_adv
[docs] def parse_params(self, theta=1., gamma=1., nb_classes=None, clip_min=0., clip_max=1., y_target=None, symbolic_impl=True, **kwargs): """ Take in a dictionary of parameters and applies attack-specific checks before saving them as attributes. Attack-specific parameters: :param theta: (optional float) Perturbation introduced to modified components (can be positive or negative) :param gamma: (optional float) Maximum percentage of perturbed features :param nb_classes: (optional int) Number of model output classes :param clip_min: (optional float) Minimum component value for clipping :param clip_max: (optional float) Maximum component value for clipping :param y_target: (optional) Target tensor if the attack is targeted """ if nb_classes is not None: warnings.warn("The nb_classes argument is depricated and will " "be removed on 2018-02-11") self.theta = theta self.gamma = gamma self.clip_min = clip_min self.clip_max = clip_max self.y_target = y_target self.symbolic_impl = symbolic_impl return True
[docs]class VirtualAdversarialMethod(Attack): """ This attack was originally proposed by Miyato et al. (2016) and was used for virtual adversarial training. Paper link: https://arxiv.org/abs/1507.00677 """ def __init__(self, model, back='tf', sess=None, dtypestr='float32'): """ Note: the model parameter should be an instance of the cleverhans.model.Model abstraction provided by CleverHans. """ if not isinstance(model, Model): model = CallableModelWrapper(model, 'logits') super(VirtualAdversarialMethod, self).__init__(model, back, sess, dtypestr) import tensorflow as tf self.feedable_kwargs = {'eps': self.tf_dtype, 'xi': self.tf_dtype, 'clip_min': self.tf_dtype, 'clip_max': self.tf_dtype} self.structural_kwargs = ['num_iterations']
[docs] def generate(self, x, **kwargs): """ Generate symbolic graph for adversarial examples and return. :param x: The model's symbolic inputs. :param eps: (optional float ) the epsilon (input variation parameter) :param num_iterations: (optional) the number of iterations :param xi: (optional float) the finite difference parameter :param clip_min: (optional float) Minimum input component value :param clip_max: (optional float) Maximum input component value """ # Parse and save attack-specific parameters assert self.parse_params(**kwargs) return vatm(self.model, x, self.model.get_logits(x), eps=self.eps, num_iterations=self.num_iterations, xi=self.xi, clip_min=self.clip_min, clip_max=self.clip_max)
[docs] def parse_params(self, eps=2.0, num_iterations=1, xi=1e-6, clip_min=None, clip_max=None, **kwargs): """ Take in a dictionary of parameters and applies attack-specific checks before saving them as attributes. Attack-specific parameters: :param eps: (optional float )the epsilon (input variation parameter) :param num_iterations: (optional) the number of iterations :param xi: (optional float) the finite difference parameter :param clip_min: (optional float) Minimum input component value :param clip_max: (optional float) Maximum input component value """ # Save attack-specific parameters self.eps = eps self.num_iterations = num_iterations self.xi = xi self.clip_min = clip_min self.clip_max = clip_max return True
[docs]class CarliniWagnerL2(Attack): """ This attack was originally proposed by Carlini and Wagner. It is an iterative attack that finds adversarial examples on many defenses that are robust to other attacks. Paper link: https://arxiv.org/abs/1608.04644 At a high level, this attack is an iterative attack using Adam and a specially-chosen loss function to find adversarial examples with lower distortion than other attacks. This comes at the cost of speed, as this attack is often much slower than others. """ def __init__(self, model, back='tf', sess=None, dtypestr='float32'): """ Note: the model parameter should be an instance of the cleverhans.model.Model abstraction provided by CleverHans. """ if not isinstance(model, Model): model = CallableModelWrapper(model, 'logits') super(CarliniWagnerL2, self).__init__(model, back, sess, dtypestr) import tensorflow as tf self.feedable_kwargs = {'y': self.tf_dtype, 'y_target': self.tf_dtype} self.structural_kwargs = ['batch_size', 'confidence', 'targeted', 'learning_rate', 'binary_search_steps', 'max_iterations', 'abort_early', 'initial_const', 'clip_min', 'clip_max']
[docs] def generate(self, x, **kwargs): """ Return a tensor that constructs adversarial examples for the given input. Generate uses tf.py_func in order to operate over tensors. :param x: (required) A tensor with the inputs. :param y: (optional) A tensor with the true labels for an untargeted attack. If None (and y_target is None) then use the original labels the classifier assigns. :param y_target: (optional) A tensor with the target labels for a targeted attack. :param confidence: Confidence of adversarial examples: higher produces examples with larger l2 distortion, but more strongly classified as adversarial. :param batch_size: Number of attacks to run simultaneously. :param learning_rate: The learning rate for the attack algorithm. Smaller values produce better results but are slower to converge. :param binary_search_steps: The number of times we perform binary search to find the optimal tradeoff- constant between norm of the purturbation and confidence of the classification. :param max_iterations: The maximum number of iterations. Setting this to a larger value will produce lower distortion results. Using only a few iterations requires a larger learning rate, and will produce larger distortion results. :param abort_early: If true, allows early aborts if gradient descent is unable to make progress (i.e., gets stuck in a local minimum). :param initial_const: The initial tradeoff-constant to use to tune the relative importance of size of the pururbation and confidence of classification. If binary_search_steps is large, the initial constant is not important. A smaller value of this constant gives lower distortion results. :param clip_min: (optional float) Minimum input component value :param clip_max: (optional float) Maximum input component value """ import tensorflow as tf from .attacks_tf import CarliniWagnerL2 as CWL2 self.parse_params(**kwargs) labels, nb_classes = self.get_or_guess_labels(x, kwargs) attack = CWL2(self.sess, self.model, self.batch_size, self.confidence, 'y_target' in kwargs, self.learning_rate, self.binary_search_steps, self.max_iterations, self.abort_early, self.initial_const, self.clip_min, self.clip_max, nb_classes, x.get_shape().as_list()[1:]) def cw_wrap(x_val, y_val): return np.array(attack.attack(x_val, y_val), dtype=self.np_dtype) wrap = tf.py_func(cw_wrap, [x, labels], self.tf_dtype) return wrap
[docs] def parse_params(self, y=None, y_target=None, nb_classes=None, batch_size=1, confidence=0, learning_rate=5e-3, binary_search_steps=5, max_iterations=1000, abort_early=True, initial_const=1e-2, clip_min=0, clip_max=1): # ignore the y and y_target argument if nb_classes is not None: warnings.warn("The nb_classes argument is depricated and will " "be removed on 2018-02-11") self.batch_size = batch_size self.confidence = confidence self.learning_rate = learning_rate self.binary_search_steps = binary_search_steps self.max_iterations = max_iterations self.abort_early = abort_early self.initial_const = initial_const self.clip_min = clip_min self.clip_max = clip_max
[docs]class ElasticNetMethod(Attack): """ This attack features L1-oriented adversarial examples and includes the C&W L2 attack as a special case (when beta is set to 0). Adversarial examples attain similar performance to those generated by the C&W L2 attack in the white-box case, and more importantly, have improved transferability properties and complement adversarial training. Paper link: https://arxiv.org/abs/1709.04114 """ def __init__(self, model, back='tf', sess=None, dtypestr='float32'): """ Note: the model parameter should be an instance of the cleverhans.model.Model abstraction provided by CleverHans. """ if not isinstance(model, Model): model = CallableModelWrapper(model, 'logits') super(ElasticNetMethod, self).__init__(model, back, sess, dtypestr) import tensorflow as tf self.feedable_kwargs = {'y': self.tf_dtype, 'y_target': self.tf_dtype} self.structural_kwargs = ['fista', 'beta', 'decision_rule', 'batch_size', 'confidence', 'targeted', 'learning_rate', 'binary_search_steps', 'max_iterations', 'abort_early', 'initial_const', 'clip_min', 'clip_max']
[docs] def generate(self, x, **kwargs): """ Return a tensor that constructs adversarial examples for the given input. Generate uses tf.py_func in order to operate over tensors. :param x: (required) A tensor with the inputs. :param y: (optional) A tensor with the true labels for an untargeted attack. If None (and y_target is None) then use the original labels the classifier assigns. :param y_target: (optional) A tensor with the target labels for a targeted attack. :param fista: FISTA or ISTA. FISTA has better convergence properties but performs an additional query per iteration :param beta: Trades off L2 distortion with L1 distortion: higher produces examples with lower L1 distortion, at the cost of higher L2 (and typically Linf) distortion :param decision_rule: EN or L1. Select final adversarial example from all successful examples based on the least elastic-net or L1 distortion criterion. :param confidence: Confidence of adversarial examples: higher produces examples with larger l2 distortion, but more strongly classified as adversarial. :param batch_size: Number of attacks to run simultaneously. :param learning_rate: The learning rate for the attack algorithm. Smaller values produce better results but are slower to converge. :param binary_search_steps: The number of times we perform binary search to find the optimal tradeoff- constant between norm of the perturbation and confidence of the classification. :param max_iterations: The maximum number of iterations. Setting this to a larger value will produce lower distortion results. Using only a few iterations requires a larger learning rate, and will produce larger distortion results. :param abort_early: If true, allows early abort when the total loss starts to increase (greatly speeds up attack, but hurts performance, particularly on ImageNet) :param initial_const: The initial tradeoff-constant to use to tune the relative importance of size of the perturbation and confidence of classification. If binary_search_steps is large, the initial constant is not important. A smaller value of this constant gives lower distortion results. :param clip_min: (optional float) Minimum input component value :param clip_max: (optional float) Maximum input component value """ import tensorflow as tf self.parse_params(**kwargs) from .attacks_tf import ElasticNetMethod as EAD labels, nb_classes = self.get_or_guess_labels(x, kwargs) attack = EAD(self.sess, self.model, self.fista, self.beta, self.decision_rule, self.batch_size, self.confidence, 'y_target' in kwargs, self.learning_rate, self.binary_search_steps, self.max_iterations, self.abort_early, self.initial_const, self.clip_min, self.clip_max, nb_classes, x.get_shape().as_list()[1:]) def ead_wrap(x_val, y_val): return np.array(attack.attack(x_val, y_val), dtype=self.np_dtype) wrap = tf.py_func(ead_wrap, [x, labels], self.tf_dtype) return wrap
[docs] def parse_params(self, y=None, y_target=None, nb_classes=None, fista=True, beta=1e-3, decision_rule='EN', batch_size=1, confidence=0, learning_rate=1e-2, binary_search_steps=9, max_iterations=1000, abort_early=False, initial_const=1e-3, clip_min=0, clip_max=1): # ignore the y and y_target argument if nb_classes is not None: warnings.warn("The nb_classes argument is depricated and will " "be removed on 2018-02-11") self.fista = fista self.beta = beta self.decision_rule = decision_rule self.batch_size = batch_size self.confidence = confidence self.learning_rate = learning_rate self.binary_search_steps = binary_search_steps self.max_iterations = max_iterations self.abort_early = abort_early self.initial_const = initial_const self.clip_min = clip_min self.clip_max = clip_max
[docs]class DeepFool(Attack): """ DeepFool is an untargeted & iterative attack which is based on an iterative linearization of the classifier. The implementation here is w.r.t. the L2 norm. Paper link: "https://arxiv.org/pdf/1511.04599.pdf" """ def __init__(self, model, back='tf', sess=None, dtypestr='float32'): """ Create a DeepFool instance. """ if not isinstance(model, Model): model = CallableModelWrapper(model, 'logits') super(DeepFool, self).__init__(model, back, sess, dtypestr) self.structural_kwargs = ['over_shoot', 'max_iter', 'clip_max', 'clip_min', 'nb_candidate']
[docs] def generate(self, x, **kwargs): """ Generate symbolic graph for adversarial examples and return. :param x: The model's symbolic inputs. :param nb_candidate: The number of classes to test against, i.e., deepfool only consider nb_candidate classes when attacking(thus accelerate speed). The nb_candidate classes are chosen according to the prediction confidence during implementation. :param overshoot: A termination criterion to prevent vanishing updates :param max_iter: Maximum number of iteration for deepfool :param nb_classes: The number of model output classes :param clip_min: Minimum component value for clipping :param clip_max: Maximum component value for clipping """ import tensorflow as tf from .attacks_tf import jacobian_graph, deepfool_batch # Parse and save attack-specific parameters assert self.parse_params(**kwargs) # Define graph wrt to this input placeholder logits = self.model.get_logits(x) self.nb_classes = logits.get_shape().as_list()[-1] assert self.nb_candidate <= self.nb_classes,\ 'nb_candidate should not be greater than nb_classes' preds = tf.reshape(tf.nn.top_k(logits, k=self.nb_candidate)[0], [-1, self.nb_candidate]) # grads will be the shape [batch_size, nb_candidate, image_size] grads = tf.stack(jacobian_graph(preds, x, self.nb_candidate), axis=1) # Define graph def deepfool_wrap(x_val): return deepfool_batch(self.sess, x, preds, logits, grads, x_val, self.nb_candidate, self.overshoot, self.max_iter, self.clip_min, self.clip_max, self.nb_classes) return tf.py_func(deepfool_wrap, [x], self.tf_dtype)
[docs] def parse_params(self, nb_candidate=10, overshoot=0.02, max_iter=50, nb_classes=None, clip_min=0., clip_max=1., **kwargs): """ :param nb_candidate: The number of classes to test against, i.e., deepfool only consider nb_candidate classes when attacking(thus accelerate speed). The nb_candidate classes are chosen according to the prediction confidence during implementation. :param overshoot: A termination criterion to prevent vanishing updates :param max_iter: Maximum number of iteration for deepfool :param nb_classes: The number of model output classes :param clip_min: Minimum component value for clipping :param clip_max: Maximum component value for clipping """ if nb_classes is not None: warnings.warn("The nb_classes argument is depricated and will " "be removed on 2018-02-11") self.nb_candidate = nb_candidate self.overshoot = overshoot self.max_iter = max_iter self.clip_min = clip_min self.clip_max = clip_max return True
[docs]class LBFGS(Attack): """ LBFGS is the first adversarial attack for convolutional neural networks, and is a target & iterative attack. Paper link: "https://arxiv.org/pdf/1312.6199.pdf" """ def __init__(self, model, back='tf', sess=None, dtypestr='float32'): """ Note: the model parameter should be an instance of the cleverhans.model.Model abstraction provided by CleverHans. """ if not isinstance(model, Model): model = CallableModelWrapper(model, 'probs') super(LBFGS, self).__init__(model, back, sess, dtypestr) import tensorflow as tf self.feedable_kwargs = {'y_target': self.tf_dtype} self.structural_kwargs = ['batch_size', 'binary_search_steps', 'max_iterations', 'initial_const', 'clip_min', 'clip_max']
[docs] def generate(self, x, **kwargs): """ Return a tensor that constructs adversarial examples for the given input. Generate uses tf.py_func in order to operate over tensors. :param x: (required) A tensor with the inputs. :param y_target: (required) A tensor with the one-hot target labels. :param batch_size: The number of inputs to include in a batch and process simultaneously. :param binary_search_steps: The number of times we perform binary search to find the optimal tradeoff- constant between norm of the purturbation and cross-entropy loss of classification. :param max_iterations: The maximum number of iterations. :param initial_const: The initial tradeoff-constant to use to tune the relative importance of size of the perturbation and cross-entropy loss of the classification. :param clip_min: (optional float) Minimum input component value :param clip_max: (optional float) Maximum input component value """ import tensorflow as tf from .attacks_tf import LBFGS_attack self.parse_params(**kwargs) _, nb_classes = self.get_or_guess_labels(x, kwargs) attack = LBFGS_attack(self.sess, x, self.model.get_probs(x), self.y_target, self.binary_search_steps, self.max_iterations, self.initial_const, self.clip_min, self.clip_max, nb_classes, self.batch_size) def lbfgs_wrap(x_val, y_val): return np.array(attack.attack(x_val, y_val), dtype=self.np_dtype) wrap = tf.py_func(lbfgs_wrap, [x, self.y_target], self.tf_dtype) return wrap
[docs] def parse_params(self, y_target=None, batch_size=1, binary_search_steps=5, max_iterations=1000, initial_const=1e-2, clip_min=0, clip_max=1): self.y_target = y_target self.batch_size = batch_size self.binary_search_steps = binary_search_steps self.max_iterations = max_iterations self.initial_const = initial_const self.clip_min = clip_min self.clip_max = clip_max
[docs]def vatm(model, x, logits, eps, back='tf', num_iterations=1, xi=1e-6, clip_min=None, clip_max=None): """ A wrapper for the perturbation methods used for virtual adversarial training : https://arxiv.org/abs/1507.00677 It calls the right function, depending on the user's backend. :param model: the model which returns the network unnormalized logits :param x: the input placeholder :param logits: the model's unnormalized output tensor :param eps: the epsilon (input variation parameter) :param num_iterations: the number of iterations :param xi: the finite difference parameter :param clip_min: optional parameter that can be used to set a minimum value for components of the example returned :param clip_max: optional parameter that can be used to set a maximum value for components of the example returned :return: a tensor for the adversarial example """ assert back == 'tf' # Compute VATM using TensorFlow from .attacks_tf import vatm as vatm_tf return vatm_tf(model, x, logits, eps, num_iterations=num_iterations, xi=xi, clip_min=clip_min, clip_max=clip_max)
[docs]class MadryEtAl(Attack): """ The Projected Gradient Descent Attack (Madry et al. 2017). Paper link: https://arxiv.org/pdf/1706.06083.pdf """ def __init__(self, model, back='tf', sess=None, dtypestr='float32'): """ Create a MadryEtAl instance. """ if not isinstance(model, Model): model = CallableModelWrapper(model, 'probs') super(MadryEtAl, self).__init__(model, back, sess, dtypestr) self.feedable_kwargs = {'eps': self.np_dtype, 'eps_iter': self.np_dtype, 'y': self.np_dtype, 'y_target': self.np_dtype, 'clip_min': self.np_dtype, 'clip_max': self.np_dtype} self.structural_kwargs = ['ord', 'nb_iter', 'rand_init']
[docs] def generate(self, x, **kwargs): """ Generate symbolic graph for adversarial examples and return. :param x: The model's symbolic inputs. :param eps: (required float) maximum distortion of adversarial example compared to original input :param eps_iter: (required float) step size for each attack iteration :param nb_iter: (required int) Number of attack iterations. :param y: (optional) A tensor with the model labels. :param y_target: (optional) A tensor with the labels to target. Leave y_target=None if y is also set. Labels should be one-hot-encoded. :param ord: (optional) Order of the norm (mimics Numpy). Possible values: np.inf, 1 or 2. :param clip_min: (optional float) Minimum input component value :param clip_max: (optional float) Maximum input component value :param rand_init: (optional bool) If True, an initial random perturbation is added. """ # Parse and save attack-specific parameters assert self.parse_params(**kwargs) labels, nb_classes = self.get_or_guess_labels(x, kwargs) self.targeted = self.y_target is not None # Initialize loop variables adv_x = self.attack(x, labels) return adv_x
[docs] def parse_params(self, eps=0.3, eps_iter=0.01, nb_iter=40, y=None, ord=np.inf, clip_min=None, clip_max=None, y_target=None, rand_init=True, **kwargs): """ Take in a dictionary of parameters and applies attack-specific checks before saving them as attributes. Attack-specific parameters: :param eps: (required float) maximum distortion of adversarial example compared to original input :param eps_iter: (required float) step size for each attack iteration :param nb_iter: (required int) Number of attack iterations. :param y: (optional) A tensor with the model labels. :param y_target: (optional) A tensor with the labels to target. Leave y_target=None if y is also set. Labels should be one-hot-encoded. :param ord: (optional) Order of the norm (mimics Numpy). Possible values: np.inf, 1 or 2. :param clip_min: (optional float) Minimum input component value :param clip_max: (optional float) Maximum input component value :param rand_init: (optional bool) If True, an initial random perturbation is added. """ # Save attack-specific parameters self.eps = eps self.eps_iter = eps_iter self.nb_iter = nb_iter self.y = y self.y_target = y_target self.ord = ord self.clip_min = clip_min self.clip_max = clip_max self.rand_init = rand_init if self.y is not None and self.y_target is not None: raise ValueError("Must not set both y and y_target") # Check if order of the norm is acceptable given current implementation if self.ord not in [np.inf, 1, 2]: raise ValueError("Norm order must be either np.inf, 1, or 2.") return True
[docs] def attack_single_step(self, x, eta, y): """ Given the original image and the perturbation computed so far, computes a new perturbation. :param x: A tensor with the original input. :param eta: A tensor the same shape as x that holds the perturbation. :param y: A tensor with the target labels or ground-truth labels. """ import tensorflow as tf from cleverhans.utils_tf import model_loss, clip_eta adv_x = x + eta preds = self.model.get_probs(adv_x) loss = model_loss(y, preds) if self.targeted: loss = -loss grad, = tf.gradients(loss, adv_x) scaled_signed_grad = self.eps_iter * tf.sign(grad) adv_x = adv_x + scaled_signed_grad if self.clip_min is not None and self.clip_max is not None: adv_x = tf.clip_by_value(adv_x, self.clip_min, self.clip_max) eta = adv_x - x eta = clip_eta(eta, self.ord, self.eps) return eta
[docs] def attack(self, x, y): """ This method creates a symbolic graph that given an input image, first randomly perturbs the image. The perturbation is bounded to an epsilon ball. Then multiple steps of gradient descent is performed to increase the probability of a target label or decrease the probability of the ground-truth label. :param x: A tensor with the input image. """ import tensorflow as tf from cleverhans.utils_tf import clip_eta if self.rand_init: eta = tf.random_uniform(tf.shape(x), -self.eps, self.eps, dtype=self.tf_dtype) eta = clip_eta(eta, self.ord, self.eps) else: eta = tf.zeros_like(x) for i in range(self.nb_iter): eta = self.attack_single_step(x, eta, y) adv_x = x + eta if self.clip_min is not None and self.clip_max is not None: adv_x = tf.clip_by_value(adv_x, self.clip_min, self.clip_max) return adv_x
[docs]class FastFeatureAdversaries(Attack): """ This is a fast implementation of "Feature Adversaries", an attack against a target internal representation of a model. "Feature adversaries" were originally introduced in (Sabour et al. 2016), where the optimization was done using LBFGS. Paper link: https://arxiv.org/abs/1511.05122 This implementation is similar to "Basic Iterative Method" (Kurakin et al. 2016) but applied to the internal representations. """ def __init__(self, model, back='tf', sess=None, dtypestr='float32'): """ Create a FastFeatureAdversaries instance. """ super(FastFeatureAdversaries, self).__init__(model, back, sess, dtypestr) self.feedable_kwargs = {'eps': self.np_dtype, 'eps_iter': self.np_dtype, 'clip_min': self.np_dtype, 'clip_max': self.np_dtype, 'layer': str} self.structural_kwargs = ['ord', 'nb_iter'] assert isinstance(self.model, Model)
[docs] def parse_params(self, layer=None, eps=0.3, eps_iter=0.05, nb_iter=10, ord=np.inf, clip_min=None, clip_max=None, **kwargs): """ Take in a dictionary of parameters and applies attack-specific checks before saving them as attributes. Attack-specific parameters: :param layer: (required str) name of the layer to target. :param eps: (required float) maximum distortion of adversarial example compared to original input :param eps_iter: (required float) step size for each attack iteration :param nb_iter: (required int) Number of attack iterations. :param ord: (optional) Order of the norm (mimics Numpy). Possible values: np.inf, 1 or 2. :param clip_min: (optional float) Minimum input component value :param clip_max: (optional float) Maximum input component value """ # Save attack-specific parameters self.layer = layer self.eps = eps self.eps_iter = eps_iter self.nb_iter = nb_iter self.ord = ord self.clip_min = clip_min self.clip_max = clip_max # Check if order of the norm is acceptable given current implementation if self.ord not in [np.inf, 1, 2]: raise ValueError("Norm order must be either np.inf, 1, or 2.") return True
[docs] def attack_single_step(self, x, eta, g_feat): """ TensorFlow implementation of the Fast Feature Gradient. This is a single step attack similar to Fast Gradient Method that attacks an internal representation. :param x: the input placeholder :param eta: A tensor the same shape as x that holds the perturbation. :param g_feat: model's internal tensor for guide :return: a tensor for the adversarial example """ import tensorflow as tf from cleverhans.utils_tf import clip_eta adv_x = x + eta a_feat = self.model.get_layer(adv_x, self.layer) # feat.shape = (batch, c) or (batch, w, h, c) axis = list(range(1, len(a_feat.shape))) # Compute loss # This is a targeted attack, hence the negative sign loss = -tf.reduce_sum(tf.square(a_feat - g_feat), axis) # Define gradient of loss wrt input grad, = tf.gradients(loss, adv_x) # Multiply by constant epsilon scaled_signed_grad = self.eps_iter * tf.sign(grad) # Add perturbation to original example to obtain adversarial example adv_x = adv_x + scaled_signed_grad # If clipping is needed, # reset all values outside of [clip_min, clip_max] if (self.clip_min is not None) and (self.clip_max is not None): adv_x = tf.clip_by_value(adv_x, self.clip_min, self.clip_max) adv_x = tf.stop_gradient(adv_x) eta = adv_x - x eta = clip_eta(eta, self.ord, self.eps) return eta
[docs] def generate(self, x, g, **kwargs): """ Generate symbolic graph for adversarial examples and return. :param x: The model's symbolic inputs. :param g: The target's symbolic representation. :param eps: (required float) maximum distortion of adversarial example compared to original input :param eps_iter: (required float) step size for each attack iteration :param nb_iter: (required int) Number of attack iterations. :param ord: (optional) Order of the norm (mimics Numpy). Possible values: np.inf, 1 or 2. :param clip_min: (optional float) Minimum input component value :param clip_max: (optional float) Maximum input component value """ import tensorflow as tf from cleverhans.utils_tf import clip_eta # Parse and save attack-specific parameters assert self.parse_params(**kwargs) g_feat = self.model.get_layer(g, self.layer) # Initialize loop variables eta = tf.random_uniform(tf.shape(x), -self.eps, self.eps, dtype=self.tf_dtype) eta = clip_eta(eta, self.ord, self.eps) for i in range(self.nb_iter): eta = self.attack_single_step(x, eta, g_feat) # Define adversarial example (and clip if necessary) adv_x = x + eta if self.clip_min is not None and self.clip_max is not None: adv_x = tf.clip_by_value(adv_x, self.clip_min, self.clip_max) return adv_x
[docs]class SPSA(Attack): """ This implements the SPSA adversary, as in https://arxiv.org/abs/1802.05666 (Uesato et al. 2018). SPSA is a gradient-free optimization method, which is useful when the model is non-differentiable, or more generally, the gradients do not point in useful directions. """ def __init__(self, model, back='tf', sess=None, dtypestr='float32'): super(SPSA, self).__init__(model, back, sess, dtypestr) assert isinstance(self.model, Model)
[docs] def generate(self, x, y=None, y_target=None, epsilon=None, num_steps=None, is_targeted=False, early_stop_loss_threshold=None, learning_rate=0.01, delta=0.01, batch_size=128, spsa_iters=1, is_debug=False): """ Generate symbolic graph for adversarial examples. :param x: The model's symbolic inputs. Must be a batch of size 1. :param y: A Tensor or None. The index of the correct label. :param y_target: A Tensor or None. The index of the target label in a targeted attack. :param epsilon: The size of the maximum perturbation, measured in the L-infinity norm. :param num_steps: The number of optimization steps. :param is_targeted: Whether to use a targeted or untargeted attack. :param early_stop_loss_threshold: A float or None. If specified, the attack will end as soon as the loss is below `early_stop_loss_threshold`. :param learning_rate: Learning rate of ADAM optimizer. :param delta: Perturbation size used for SPSA approximation. :param batch_size: Number of inputs to evaluate at a single time. Note that the true batch size (the number of evaluated inputs for each update) is `batch_size * spsa_iters` :param spsa_iters: Number of model evaluations before performing an update, where each evaluation is on `batch_size` different inputs. :param is_debug: If True, print the adversarial loss after each update. """ from .attacks_tf import SPSAAdam, pgd_attack, margin_logit_loss optimizer = SPSAAdam(lr=learning_rate, delta=delta, num_samples=batch_size, num_iters=spsa_iters) def loss_fn(x, label): logits = self.model.get_logits(x) loss_multiplier = 1 if is_targeted else -1 return loss_multiplier * margin_logit_loss( logits, label, num_classes=self.model.num_classes) y_attack = y_target if is_targeted else y adv_x = pgd_attack( loss_fn, x, y_attack, epsilon, num_steps=num_steps, optimizer=optimizer, early_stop_loss_threshold=early_stop_loss_threshold, is_debug=is_debug, ) return adv_x