

CleverHans Documentation

This documentation is auto-generated from the docstrings of modules of the current master branch of tensorflow/cleverhans [http://github.com/tensorflow/cleverhans/].

To get started, we recommend reading the github readme [https://github.com/tensorflow/cleverhans#setting-up-cleverhans]. Afterwards, you can learn more by looking at the following modules:

	attacks module

	model module

Indices and tables

	Index

	Module Index

	Search Page

attacks module

	
class cleverhans.attacks.Attack(model, back='tf', sess=None, dtypestr='float32')

	Bases: object

Abstract base class for all attack classes.

	
construct_graph(fixed, feedable, x_val, hash_key)

	Construct the graph required to run the attack through generate_np.

	Parameters

	
	fixed – Structural elements that require defining a new graph.

	feedable – Arguments that can be fed to the same graph when
they take different values.

	x_val – symbolic adversarial example

	hash_key – the key used to store this graph in our cache

	
construct_variables(kwargs)

	Construct the inputs to the attack graph to be used by generate_np.

	Parameters

	kwargs – Keyword arguments to generate_np.

	Returns

	Structural and feedable arguments as well as a unique key
for the graph given these inputs.

	
generate(x, **kwargs)

	Generate the attack’s symbolic graph for adversarial examples. This
method should be overriden in any child class that implements an
attack that is expressable symbolically. Otherwise, it will wrap the
numerical implementation as a symbolic operator.

	Parameters

	
	x – The model’s symbolic inputs.

	**kwargs – optional parameters used by child classes.

	Returns

	A symbolic representation of the adversarial examples.

	
generate_np(x_val, **kwargs)

	Generate adversarial examples and return them as a NumPy array.
Sub-classes should not implement this method unless they must
perform special handling of arguments.

	Parameters

	
	x_val – A NumPy array with the original inputs.

	**kwargs – optional parameters used by child classes.

	Returns

	A NumPy array holding the adversarial examples.

	
get_or_guess_labels(x, kwargs)

	Get the label to use in generating an adversarial example for x.
The kwargs are fed directly from the kwargs of the attack.
If ‘y’ is in kwargs, then assume it’s an untargeted attack and
use that as the label.
If ‘y_target’ is in kwargs, then assume it’s a targeted attack and
use that as the label.
Otherwise, use the model’s prediction as the label and perform an
untargeted attack.

	
parse_params(params=None)

	Take in a dictionary of parameters and applies attack-specific checks
before saving them as attributes.

	Parameters

	params – a dictionary of attack-specific parameters

	Returns

	True when parsing was successful

	
class cleverhans.attacks.BasicIterativeMethod(model, back='tf', sess=None, dtypestr='float32')

	Bases: cleverhans.attacks.Attack

The Basic Iterative Method (Kurakin et al. 2016). The original paper used
hard labels for this attack; no label smoothing.
Paper link: https://arxiv.org/pdf/1607.02533.pdf

	
generate(x, **kwargs)

	Generate symbolic graph for adversarial examples and return.

	Parameters

	
	x – The model’s symbolic inputs.

	eps – (required float) maximum distortion of adversarial example
compared to original input

	eps_iter – (required float) step size for each attack iteration

	nb_iter – (required int) Number of attack iterations.

	y – (optional) A tensor with the model labels.

	y_target – (optional) A tensor with the labels to target. Leave
y_target=None if y is also set. Labels should be
one-hot-encoded.

	ord – (optional) Order of the norm (mimics Numpy).
Possible values: np.inf, 1 or 2.

	clip_min – (optional float) Minimum input component value

	clip_max – (optional float) Maximum input component value

	
parse_params(eps=0.3, eps_iter=0.05, nb_iter=10, y=None, ord=inf, clip_min=None, clip_max=None, y_target=None, **kwargs)

	Take in a dictionary of parameters and applies attack-specific checks
before saving them as attributes.

Attack-specific parameters:

	Parameters

	
	eps – (required float) maximum distortion of adversarial example
compared to original input

	eps_iter – (required float) step size for each attack iteration

	nb_iter – (required int) Number of attack iterations.

	y – (optional) A tensor with the model labels.

	y_target – (optional) A tensor with the labels to target. Leave
y_target=None if y is also set. Labels should be
one-hot-encoded.

	ord – (optional) Order of the norm (mimics Numpy).
Possible values: np.inf, 1 or 2.

	clip_min – (optional float) Minimum input component value

	clip_max – (optional float) Maximum input component value

	
class cleverhans.attacks.CarliniWagnerL2(model, back='tf', sess=None, dtypestr='float32')

	Bases: cleverhans.attacks.Attack

This attack was originally proposed by Carlini and Wagner. It is an
iterative attack that finds adversarial examples on many defenses that
are robust to other attacks.
Paper link: https://arxiv.org/abs/1608.04644

At a high level, this attack is an iterative attack using Adam and
a specially-chosen loss function to find adversarial examples with
lower distortion than other attacks. This comes at the cost of speed,
as this attack is often much slower than others.

	
generate(x, **kwargs)

	Return a tensor that constructs adversarial examples for the given
input. Generate uses tf.py_func in order to operate over tensors.

	Parameters

	
	x – (required) A tensor with the inputs.

	y – (optional) A tensor with the true labels for an untargeted
attack. If None (and y_target is None) then use the
original labels the classifier assigns.

	y_target – (optional) A tensor with the target labels for a
targeted attack.

	confidence – Confidence of adversarial examples: higher produces
examples with larger l2 distortion, but more
strongly classified as adversarial.

	batch_size – Number of attacks to run simultaneously.

	learning_rate – The learning rate for the attack algorithm.
Smaller values produce better results but are
slower to converge.

	binary_search_steps – The number of times we perform binary
search to find the optimal tradeoff-
constant between norm of the purturbation
and confidence of the classification.

	max_iterations – The maximum number of iterations. Setting this
to a larger value will produce lower distortion
results. Using only a few iterations requires
a larger learning rate, and will produce larger
distortion results.

	abort_early – If true, allows early aborts if gradient descent
is unable to make progress (i.e., gets stuck in
a local minimum).

	initial_const – The initial tradeoff-constant to use to tune the
relative importance of size of the pururbation
and confidence of classification.
If binary_search_steps is large, the initial
constant is not important. A smaller value of
this constant gives lower distortion results.

	clip_min – (optional float) Minimum input component value

	clip_max – (optional float) Maximum input component value

	
parse_params(y=None, y_target=None, nb_classes=None, batch_size=1, confidence=0, learning_rate=0.005, binary_search_steps=5, max_iterations=1000, abort_early=True, initial_const=0.01, clip_min=0, clip_max=1)

	Take in a dictionary of parameters and applies attack-specific checks
before saving them as attributes.

	Parameters

	params – a dictionary of attack-specific parameters

	Returns

	True when parsing was successful

	
class cleverhans.attacks.DeepFool(model, back='tf', sess=None, dtypestr='float32')

	Bases: cleverhans.attacks.Attack

DeepFool is an untargeted & iterative attack which is based on an
iterative linearization of the classifier. The implementation here
is w.r.t. the L2 norm.
Paper link: “https://arxiv.org/pdf/1511.04599.pdf”

	
generate(x, **kwargs)

	Generate symbolic graph for adversarial examples and return.

	Parameters

	
	x – The model’s symbolic inputs.

	nb_candidate – The number of classes to test against, i.e.,
deepfool only consider nb_candidate classes when
attacking(thus accelerate speed). The nb_candidate
classes are chosen according to the prediction
confidence during implementation.

	overshoot – A termination criterion to prevent vanishing updates

	max_iter – Maximum number of iteration for deepfool

	nb_classes – The number of model output classes

	clip_min – Minimum component value for clipping

	clip_max – Maximum component value for clipping

	
parse_params(nb_candidate=10, overshoot=0.02, max_iter=50, nb_classes=None, clip_min=0.0, clip_max=1.0, **kwargs)

	
	Parameters

	
	nb_candidate – The number of classes to test against, i.e.,
deepfool only consider nb_candidate classes when
attacking(thus accelerate speed). The nb_candidate
classes are chosen according to the prediction
confidence during implementation.

	overshoot – A termination criterion to prevent vanishing updates

	max_iter – Maximum number of iteration for deepfool

	nb_classes – The number of model output classes

	clip_min – Minimum component value for clipping

	clip_max – Maximum component value for clipping

	
class cleverhans.attacks.ElasticNetMethod(model, back='tf', sess=None, dtypestr='float32')

	Bases: cleverhans.attacks.Attack

This attack features L1-oriented adversarial examples and includes
the C&W L2 attack as a special case (when beta is set to 0).
Adversarial examples attain similar performance to those
generated by the C&W L2 attack in the white-box case,
and more importantly, have improved transferability properties
and complement adversarial training.
Paper link: https://arxiv.org/abs/1709.04114

	
generate(x, **kwargs)

	Return a tensor that constructs adversarial examples for the given
input. Generate uses tf.py_func in order to operate over tensors.

	Parameters

	
	x – (required) A tensor with the inputs.

	y – (optional) A tensor with the true labels for an untargeted
attack. If None (and y_target is None) then use the
original labels the classifier assigns.

	y_target – (optional) A tensor with the target labels for a
targeted attack.

	fista – FISTA or ISTA. FISTA has better convergence properties
but performs an additional query per iteration

	beta – Trades off L2 distortion with L1 distortion: higher
produces examples with lower L1 distortion, at the
cost of higher L2 (and typically Linf) distortion

	decision_rule – EN or L1. Select final adversarial example from
all successful examples based on the least
elastic-net or L1 distortion criterion.

	confidence – Confidence of adversarial examples: higher produces
examples with larger l2 distortion, but more
strongly classified as adversarial.

	batch_size – Number of attacks to run simultaneously.

	learning_rate – The learning rate for the attack algorithm.
Smaller values produce better results but are
slower to converge.

	binary_search_steps – The number of times we perform binary
search to find the optimal tradeoff-
constant between norm of the perturbation
and confidence of the classification.

	max_iterations – The maximum number of iterations. Setting this
to a larger value will produce lower distortion
results. Using only a few iterations requires
a larger learning rate, and will produce larger
distortion results.

	abort_early – If true, allows early abort when the total
loss starts to increase (greatly speeds up attack,
but hurts performance, particularly on ImageNet)

	initial_const – The initial tradeoff-constant to use to tune the
relative importance of size of the perturbation
and confidence of classification.
If binary_search_steps is large, the initial
constant is not important. A smaller value of
this constant gives lower distortion results.

	clip_min – (optional float) Minimum input component value

	clip_max – (optional float) Maximum input component value

	
parse_params(y=None, y_target=None, nb_classes=None, fista=True, beta=0.001, decision_rule='EN', batch_size=1, confidence=0, learning_rate=0.01, binary_search_steps=9, max_iterations=1000, abort_early=False, initial_const=0.001, clip_min=0, clip_max=1)

	Take in a dictionary of parameters and applies attack-specific checks
before saving them as attributes.

	Parameters

	params – a dictionary of attack-specific parameters

	Returns

	True when parsing was successful

	
class cleverhans.attacks.FastFeatureAdversaries(model, back='tf', sess=None, dtypestr='float32')

	Bases: cleverhans.attacks.Attack

This is a fast implementation of “Feature Adversaries”, an attack
against a target internal representation of a model.
“Feature adversaries” were originally introduced in (Sabour et al. 2016),
where the optimization was done using LBFGS.
Paper link: https://arxiv.org/abs/1511.05122

This implementation is similar to “Basic Iterative Method”
(Kurakin et al. 2016) but applied to the internal representations.

	
attack_single_step(x, eta, g_feat)

	TensorFlow implementation of the Fast Feature Gradient. This is a
single step attack similar to Fast Gradient Method that attacks an
internal representation.

	Parameters

	
	x – the input placeholder

	eta – A tensor the same shape as x that holds the perturbation.

	g_feat – model’s internal tensor for guide

	Returns

	a tensor for the adversarial example

	
generate(x, g, **kwargs)

	Generate symbolic graph for adversarial examples and return.

	Parameters

	
	x – The model’s symbolic inputs.

	g – The target’s symbolic representation.

	eps – (required float) maximum distortion of adversarial example
compared to original input

	eps_iter – (required float) step size for each attack iteration

	nb_iter – (required int) Number of attack iterations.

	ord – (optional) Order of the norm (mimics Numpy).
Possible values: np.inf, 1 or 2.

	clip_min – (optional float) Minimum input component value

	clip_max – (optional float) Maximum input component value

	
parse_params(layer=None, eps=0.3, eps_iter=0.05, nb_iter=10, ord=inf, clip_min=None, clip_max=None, **kwargs)

	Take in a dictionary of parameters and applies attack-specific checks
before saving them as attributes.

Attack-specific parameters:

	Parameters

	
	layer – (required str) name of the layer to target.

	eps – (required float) maximum distortion of adversarial example
compared to original input

	eps_iter – (required float) step size for each attack iteration

	nb_iter – (required int) Number of attack iterations.

	ord – (optional) Order of the norm (mimics Numpy).
Possible values: np.inf, 1 or 2.

	clip_min – (optional float) Minimum input component value

	clip_max – (optional float) Maximum input component value

	
class cleverhans.attacks.FastGradientMethod(model, back='tf', sess=None, dtypestr='float32')

	Bases: cleverhans.attacks.Attack

This attack was originally implemented by Goodfellow et al. (2015) with the
infinity norm (and is known as the “Fast Gradient Sign Method”). This
implementation extends the attack to other norms, and is therefore called
the Fast Gradient Method.
Paper link: https://arxiv.org/abs/1412.6572

	
generate(x, **kwargs)

	Generate symbolic graph for adversarial examples and return.

	Parameters

	
	x – The model’s symbolic inputs.

	eps – (optional float) attack step size (input variation)

	ord – (optional) Order of the norm (mimics NumPy).
Possible values: np.inf, 1 or 2.

	y – (optional) A tensor with the model labels. Only provide
this parameter if you’d like to use true labels when crafting
adversarial samples. Otherwise, model predictions are used as
labels to avoid the “label leaking” effect (explained in this
paper: https://arxiv.org/abs/1611.01236). Default is None.
Labels should be one-hot-encoded.

	y_target – (optional) A tensor with the labels to target. Leave
y_target=None if y is also set. Labels should be
one-hot-encoded.

	clip_min – (optional float) Minimum input component value

	clip_max – (optional float) Maximum input component value

	
parse_params(eps=0.3, ord=inf, y=None, y_target=None, clip_min=None, clip_max=None, **kwargs)

	Take in a dictionary of parameters and applies attack-specific checks
before saving them as attributes.

Attack-specific parameters:

	Parameters

	
	eps – (optional float) attack step size (input variation)

	ord – (optional) Order of the norm (mimics NumPy).
Possible values: np.inf, 1 or 2.

	y – (optional) A tensor with the model labels. Only provide
this parameter if you’d like to use true labels when crafting
adversarial samples. Otherwise, model predictions are used as
labels to avoid the “label leaking” effect (explained in this
paper: https://arxiv.org/abs/1611.01236). Default is None.
Labels should be one-hot-encoded.

	y_target – (optional) A tensor with the labels to target. Leave
y_target=None if y is also set. Labels should be
one-hot-encoded.

	clip_min – (optional float) Minimum input component value

	clip_max – (optional float) Maximum input component value

	
class cleverhans.attacks.LBFGS(model, back='tf', sess=None, dtypestr='float32')

	Bases: cleverhans.attacks.Attack

LBFGS is the first adversarial attack for convolutional neural networks,
and is a target & iterative attack.
Paper link: “https://arxiv.org/pdf/1312.6199.pdf”

	
generate(x, **kwargs)

	Return a tensor that constructs adversarial examples for the given
input. Generate uses tf.py_func in order to operate over tensors.

	Parameters

	
	x – (required) A tensor with the inputs.

	y_target – (required) A tensor with the one-hot target labels.

	batch_size – The number of inputs to include in a batch and
process simultaneously.

	binary_search_steps – The number of times we perform binary
search to find the optimal tradeoff-
constant between norm of the purturbation
and cross-entropy loss of classification.

	max_iterations – The maximum number of iterations.

	initial_const – The initial tradeoff-constant to use to tune the
relative importance of size of the perturbation
and cross-entropy loss of the classification.

	clip_min – (optional float) Minimum input component value

	clip_max – (optional float) Maximum input component value

	
parse_params(y_target=None, batch_size=1, binary_search_steps=5, max_iterations=1000, initial_const=0.01, clip_min=0, clip_max=1)

	Take in a dictionary of parameters and applies attack-specific checks
before saving them as attributes.

	Parameters

	params – a dictionary of attack-specific parameters

	Returns

	True when parsing was successful

	
class cleverhans.attacks.MadryEtAl(model, back='tf', sess=None, dtypestr='float32')

	Bases: cleverhans.attacks.Attack

The Projected Gradient Descent Attack (Madry et al. 2017).
Paper link: https://arxiv.org/pdf/1706.06083.pdf

	
attack(x, y)

	This method creates a symbolic graph that given an input image,
first randomly perturbs the image. The
perturbation is bounded to an epsilon ball. Then multiple steps of
gradient descent is performed to increase the probability of a target
label or decrease the probability of the ground-truth label.

	Parameters

	x – A tensor with the input image.

	
attack_single_step(x, eta, y)

	Given the original image and the perturbation computed so far, computes
a new perturbation.

	Parameters

	
	x – A tensor with the original input.

	eta – A tensor the same shape as x that holds the perturbation.

	y – A tensor with the target labels or ground-truth labels.

	
generate(x, **kwargs)

	Generate symbolic graph for adversarial examples and return.

	Parameters

	
	x – The model’s symbolic inputs.

	eps – (required float) maximum distortion of adversarial example
compared to original input

	eps_iter – (required float) step size for each attack iteration

	nb_iter – (required int) Number of attack iterations.

	y – (optional) A tensor with the model labels.

	y_target – (optional) A tensor with the labels to target. Leave
y_target=None if y is also set. Labels should be
one-hot-encoded.

	ord – (optional) Order of the norm (mimics Numpy).
Possible values: np.inf, 1 or 2.

	clip_min – (optional float) Minimum input component value

	clip_max – (optional float) Maximum input component value

	rand_init – (optional bool) If True, an initial random
perturbation is added.

	
parse_params(eps=0.3, eps_iter=0.01, nb_iter=40, y=None, ord=inf, clip_min=None, clip_max=None, y_target=None, rand_init=True, **kwargs)

	Take in a dictionary of parameters and applies attack-specific checks
before saving them as attributes.

Attack-specific parameters:

	Parameters

	
	eps – (required float) maximum distortion of adversarial example
compared to original input

	eps_iter – (required float) step size for each attack iteration

	nb_iter – (required int) Number of attack iterations.

	y – (optional) A tensor with the model labels.

	y_target – (optional) A tensor with the labels to target. Leave
y_target=None if y is also set. Labels should be
one-hot-encoded.

	ord – (optional) Order of the norm (mimics Numpy).
Possible values: np.inf, 1 or 2.

	clip_min – (optional float) Minimum input component value

	clip_max – (optional float) Maximum input component value

	rand_init – (optional bool) If True, an initial random
perturbation is added.

	
class cleverhans.attacks.MomentumIterativeMethod(model, back='tf', sess=None, dtypestr='float32')

	Bases: cleverhans.attacks.Attack

The Momentum Iterative Method (Dong et al. 2017). This method won
the first places in NIPS 2017 Non-targeted Adversarial Attacks and
Targeted Adversarial Attacks. The original paper used hard labels
for this attack; no label smoothing.
Paper link: https://arxiv.org/pdf/1710.06081.pdf

	
generate(x, **kwargs)

	Generate symbolic graph for adversarial examples and return.

	Parameters

	
	x – The model’s symbolic inputs.

	eps – (required float) maximum distortion of adversarial example
compared to original input

	eps_iter – (required float) step size for each attack iteration

	nb_iter – (required int) Number of attack iterations.

	y – (optional) A tensor with the model labels.

	y_target – (optional) A tensor with the labels to target. Leave
y_target=None if y is also set. Labels should be
one-hot-encoded.

	ord – (optional) Order of the norm (mimics Numpy).
Possible values: np.inf, 1 or 2.

	decay_factor – (optional) Decay factor for the momentum term.

	clip_min – (optional float) Minimum input component value

	clip_max – (optional float) Maximum input component value

	
parse_params(eps=0.3, eps_iter=0.06, nb_iter=10, y=None, ord=inf, decay_factor=1.0, clip_min=None, clip_max=None, y_target=None, **kwargs)

	Take in a dictionary of parameters and applies attack-specific checks
before saving them as attributes.

Attack-specific parameters:

	Parameters

	
	eps – (required float) maximum distortion of adversarial example
compared to original input

	eps_iter – (required float) step size for each attack iteration

	nb_iter – (required int) Number of attack iterations.

	y – (optional) A tensor with the model labels.

	y_target – (optional) A tensor with the labels to target. Leave
y_target=None if y is also set. Labels should be
one-hot-encoded.

	ord – (optional) Order of the norm (mimics Numpy).
Possible values: np.inf, 1 or 2.

	decay_factor – (optional) Decay factor for the momentum term.

	clip_min – (optional float) Minimum input component value

	clip_max – (optional float) Maximum input component value

	
class cleverhans.attacks.SPSA(model, back='tf', sess=None, dtypestr='float32')

	Bases: cleverhans.attacks.Attack

This implements the SPSA adversary, as in https://arxiv.org/abs/1802.05666
(Uesato et al. 2018). SPSA is a gradient-free optimization method, which
is useful when the model is non-differentiable, or more generally, the
gradients do not point in useful directions.

	
generate(x, y=None, y_target=None, epsilon=None, num_steps=None, is_targeted=False, early_stop_loss_threshold=None, learning_rate=0.01, delta=0.01, batch_size=128, spsa_iters=1, is_debug=False)

	Generate symbolic graph for adversarial examples.

	Parameters

	
	x – The model’s symbolic inputs. Must be a batch of size 1.

	y – A Tensor or None. The index of the correct label.

	y_target – A Tensor or None. The index of the target label in a
targeted attack.

	epsilon – The size of the maximum perturbation, measured in the
L-infinity norm.

	num_steps – The number of optimization steps.

	is_targeted – Whether to use a targeted or untargeted attack.

	early_stop_loss_threshold – A float or None. If specified, the
attack will end as soon as the loss
is below early_stop_loss_threshold.

	learning_rate – Learning rate of ADAM optimizer.

	delta – Perturbation size used for SPSA approximation.

	batch_size – Number of inputs to evaluate at a single time. Note
that the true batch size (the number of evaluated
inputs for each update) is batch_size * spsa_iters

	spsa_iters – Number of model evaluations before performing an
update, where each evaluation is on batch_size
different inputs.

	is_debug – If True, print the adversarial loss after each update.

	
class cleverhans.attacks.SaliencyMapMethod(model, back='tf', sess=None, dtypestr='float32')

	Bases: cleverhans.attacks.Attack

The Jacobian-based Saliency Map Method (Papernot et al. 2016).
Paper link: https://arxiv.org/pdf/1511.07528.pdf

	
generate(x, **kwargs)

	Generate symbolic graph for adversarial examples and return.

	Parameters

	
	x – The model’s symbolic inputs.

	theta – (optional float) Perturbation introduced to modified
components (can be positive or negative)

	gamma – (optional float) Maximum percentage of perturbed features

	clip_min – (optional float) Minimum component value for clipping

	clip_max – (optional float) Maximum component value for clipping

	y_target – (optional) Target tensor if the attack is targeted

	
parse_params(theta=1.0, gamma=1.0, nb_classes=None, clip_min=0.0, clip_max=1.0, y_target=None, symbolic_impl=True, **kwargs)

	Take in a dictionary of parameters and applies attack-specific checks
before saving them as attributes.

Attack-specific parameters:

	Parameters

	
	theta – (optional float) Perturbation introduced to modified
components (can be positive or negative)

	gamma – (optional float) Maximum percentage of perturbed features

	nb_classes – (optional int) Number of model output classes

	clip_min – (optional float) Minimum component value for clipping

	clip_max – (optional float) Maximum component value for clipping

	y_target – (optional) Target tensor if the attack is targeted

	
class cleverhans.attacks.VirtualAdversarialMethod(model, back='tf', sess=None, dtypestr='float32')

	Bases: cleverhans.attacks.Attack

This attack was originally proposed by Miyato et al. (2016) and was used
for virtual adversarial training.
Paper link: https://arxiv.org/abs/1507.00677

	
generate(x, **kwargs)

	Generate symbolic graph for adversarial examples and return.

	Parameters

	
	x – The model’s symbolic inputs.

	eps – (optional float) the epsilon (input variation parameter)

	num_iterations – (optional) the number of iterations

	xi – (optional float) the finite difference parameter

	clip_min – (optional float) Minimum input component value

	clip_max – (optional float) Maximum input component value

	
parse_params(eps=2.0, num_iterations=1, xi=1e-06, clip_min=None, clip_max=None, **kwargs)

	Take in a dictionary of parameters and applies attack-specific checks
before saving them as attributes.

Attack-specific parameters:

	Parameters

	
	eps – (optional float)the epsilon (input variation parameter)

	num_iterations – (optional) the number of iterations

	xi – (optional float) the finite difference parameter

	clip_min – (optional float) Minimum input component value

	clip_max – (optional float) Maximum input component value

	
cleverhans.attacks.vatm(model, x, logits, eps, back='tf', num_iterations=1, xi=1e-06, clip_min=None, clip_max=None)

	A wrapper for the perturbation methods used for virtual adversarial
training : https://arxiv.org/abs/1507.00677
It calls the right function, depending on the
user’s backend.

	Parameters

	
	model – the model which returns the network unnormalized logits

	x – the input placeholder

	logits – the model’s unnormalized output tensor

	eps – the epsilon (input variation parameter)

	num_iterations – the number of iterations

	xi – the finite difference parameter

	clip_min – optional parameter that can be used to set a minimum
value for components of the example returned

	clip_max – optional parameter that can be used to set a maximum
value for components of the example returned

	Returns

	a tensor for the adversarial example

model module

	
class cleverhans.model.CallableModelWrapper(callable_fn, output_layer)

	Bases: cleverhans.model.Model

	
fprop(x)

	Exposes all the layers of the model returned by get_layer_names.
:param x: A symbolic representation of the network input
:return: A dictionary mapping layer names to the symbolic

representation of their output.

	
get_layer_names()

	
	Returns

	a list of names for the layers that can be exposed by this

model abstraction.

	
class cleverhans.model.Model

	Bases: object

An abstract interface for model wrappers that exposes model symbols
needed for making an attack. This abstraction removes the dependency on
any specific neural network package (e.g. Keras) from the core
code of CleverHans. It can also simplify exposing the hidden features of a
model when a specific package does not directly expose them.

	
fprop(x)

	Exposes all the layers of the model returned by get_layer_names.
:param x: A symbolic representation of the network input
:return: A dictionary mapping layer names to the symbolic

representation of their output.

	
get_layer(x, layer)

	Expose the hidden features of a model given a layer name.
:param x: A symbolic representation of the network input
:param layer: The name of the hidden layer to return features at.
:return: A symbolic representation of the hidden features
:raise: NoSuchLayerError if layer is not in the model.

	
get_layer_names()

	
	Returns

	a list of names for the layers that can be exposed by this

model abstraction.

	
get_logits(x)

	
	Parameters

	x – A symbolic representation of the network input

	Returns

	A symbolic representation of the output logits (i.e., the
values fed as inputs to the softmax layer).

	
get_params()

	Provides access to the model’s parameters.
:return: A list of all Variables defining the model parameters.

	
get_probs(x)

	
	Parameters

	x – A symbolic representation of the network input

	Returns

	A symbolic representation of the output probabilities (i.e.,
the output values produced by the softmax layer).

	
exception cleverhans.model.NoSuchLayerError

	Bases: exceptions.ValueError

Raised when a layer that does not exist is requested.

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 cleverhans	

 	
 	
 cleverhans.attacks	

 	
 	
 cleverhans.model	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | L
 | M
 | N
 | P
 | S
 | V

A

 	
 	Attack (class in cleverhans.attacks)

 	attack() (cleverhans.attacks.MadryEtAl method)

 	
 	attack_single_step() (cleverhans.attacks.FastFeatureAdversaries method)

 	(cleverhans.attacks.MadryEtAl method)

B

 	
 	BasicIterativeMethod (class in cleverhans.attacks)

C

 	
 	CallableModelWrapper (class in cleverhans.model)

 	CarliniWagnerL2 (class in cleverhans.attacks)

 	cleverhans.attacks (module)

 	
 	cleverhans.model (module)

 	construct_graph() (cleverhans.attacks.Attack method)

 	construct_variables() (cleverhans.attacks.Attack method)

D

 	
 	DeepFool (class in cleverhans.attacks)

E

 	
 	ElasticNetMethod (class in cleverhans.attacks)

F

 	
 	FastFeatureAdversaries (class in cleverhans.attacks)

 	FastGradientMethod (class in cleverhans.attacks)

 	
 	fprop() (cleverhans.model.CallableModelWrapper method)

 	(cleverhans.model.Model method)

G

 	
 	generate() (cleverhans.attacks.Attack method)

 	(cleverhans.attacks.BasicIterativeMethod method)

 	(cleverhans.attacks.CarliniWagnerL2 method)

 	(cleverhans.attacks.DeepFool method)

 	(cleverhans.attacks.ElasticNetMethod method)

 	(cleverhans.attacks.FastFeatureAdversaries method)

 	(cleverhans.attacks.FastGradientMethod method)

 	(cleverhans.attacks.LBFGS method)

 	(cleverhans.attacks.MadryEtAl method)

 	(cleverhans.attacks.MomentumIterativeMethod method)

 	(cleverhans.attacks.SPSA method)

 	(cleverhans.attacks.SaliencyMapMethod method)

 	(cleverhans.attacks.VirtualAdversarialMethod method)

 	
 	generate_np() (cleverhans.attacks.Attack method)

 	get_layer() (cleverhans.model.Model method)

 	get_layer_names() (cleverhans.model.CallableModelWrapper method)

 	(cleverhans.model.Model method)

 	get_logits() (cleverhans.model.Model method)

 	get_or_guess_labels() (cleverhans.attacks.Attack method)

 	get_params() (cleverhans.model.Model method)

 	get_probs() (cleverhans.model.Model method)

L

 	
 	LBFGS (class in cleverhans.attacks)

M

 	
 	MadryEtAl (class in cleverhans.attacks)

 	
 	Model (class in cleverhans.model)

 	MomentumIterativeMethod (class in cleverhans.attacks)

N

 	
 	NoSuchLayerError

P

 	
 	parse_params() (cleverhans.attacks.Attack method)

 	(cleverhans.attacks.BasicIterativeMethod method)

 	(cleverhans.attacks.CarliniWagnerL2 method)

 	(cleverhans.attacks.DeepFool method)

 	(cleverhans.attacks.ElasticNetMethod method)

 	(cleverhans.attacks.FastFeatureAdversaries method)

 	(cleverhans.attacks.FastGradientMethod method)

 	(cleverhans.attacks.LBFGS method)

 	(cleverhans.attacks.MadryEtAl method)

 	(cleverhans.attacks.MomentumIterativeMethod method)

 	(cleverhans.attacks.SaliencyMapMethod method)

 	(cleverhans.attacks.VirtualAdversarialMethod method)

S

 	
 	SaliencyMapMethod (class in cleverhans.attacks)

 	
 	SPSA (class in cleverhans.attacks)

V

 	
 	vatm() (in module cleverhans.attacks)

 	
 	VirtualAdversarialMethod (class in cleverhans.attacks)

 nav.xhtml

 Table of Contents

 		
 CleverHans Documentation

 		
 attacks module

 		
 model module

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

